Paryphantopsis (Gastropoda: Pulmonata: Charopidae) from the Louisiade Archipelago of New Guinea

John Slapcinsky
Floridia Musemon of Natural Histon
Universite of Florida
Cainestille, FL 32 gil USA
slapcin@flmulu.nfl.edu

Abstract

Recent sumers ($2003-2004$) of the terrestrial smail fama of the three kargest islands in the Lomisiade Arclipelago, Misma. Rossel and Sudest have monered a remarkable ratiation of Paryphantopsis, a diverse gemes of charopid suails endemic to New Guinea and nemby islands. Previonsly, only one species. Paryphantopsis louisiadarm. here recognized as endemic to Rossel Island was known from the Louisiade Archipelago. Three additional species were meorered, all new and all ippear to be endemic to single istands within the Louisiade Archipelago. The four species are described or redescribed using information on shell, genital and radular anatoms. The terrestrial mollusks of many of the other islands in the Lomisiade Archipelago have never been sampled and it is likely that diversity of Paryphantopsis and other land smails is maderestimated in the Lonisiades.

Additional Kcyucords: Mollnsca, mollnsks, terrestrial gastropods, land snails, endemism, Papual New Guinea.

INTRODUCTION

This is the second in a series of reports on the results of recent field surveys of terrestrial mollusks from Papua New Guinea. The first report (Slapeinsky, 2005) described six new species of the daropid genus Paryphantopsis from the eastern peninsula of mainland New Guinea; this, the second, reviews Paryphantopsis speecies collected doring ten weeks of field smeys in Jannary 2003 and April- Nay 2004 from the three largest islands in the Louisiade Archipelago: Misima (St. Aignan), Rossel (Yela), and Sudest (Vanatinai, Tagula). Partp homtopsis, a genus ol charopid snails endemic to New Guinea, is comprised of twenty deseribed species (Solem, 1970; Slapcinsky, 2005) that are distributed from Westem Papua (Irian Java) to the Louisiade Archipelago. Only one species. Paryphantopsis lonisiadamm (Möllendorff, 1599 was pretiously koown from the Louisiade Archipelago: it is the type of the gemus Illonesta (Iredale, 19+1), later stmonimized with Paryplantopsis (Solem. 1955

The Louisiade Archipelago, a group of volcanic islands
and coral islets, with a total area of approximately 1600 km^{2}, lies abont 300 km east ol the New Guinea mainlamed and 400 km west of the Solomon Islands (Figure 1). The archipelago is located on the southeastern extension of the Owen Stanley Terrane, part of the East Papua Composite Terrame (EPCT) , a tectonic province composed of at least four separate geological units witlı differing ages, origins, and histories that appear to have asscmbled northeast of modern New Gumea during the Paleocene, 62-57 Myr ago, and frosed to the main body of the island in the Late Oligocene to Early Miocene, 28-22 Myr ago. The Lonisiades are at least 15-20 million years old and more likely were formed $40-60$ million years ago and have apparently never had a land connection with the New Guinea mainland (Pigram and Davies, 1987). The Lonisiades physical isolation and great age combine to protide considerable opportunity for the evolution of a distinctive fama. However, this fauna is ponty sampled, especially for imertebrates, including terrestrial mollusks. Only approximately 30 species of land-snails are known from the archipelago (Hredale, 1941), these were collected during brich surveys in the mid to late $19^{\text {th }}$ Century. Nearly all of these species appear to be restricted to single islands. Low sampling intensity combined with anticipated ligh levels ol endemism suggests that land snail diversity in the archipelago is undersampled.

MATERIAIS AND METIIODS

Specimens were hand-collected, drowned oremight, and presenved in 75% etlanol. Cross amatomical dissections were made in 75% ethamol using a dissecting microscope. Radulae were isolated from dissected huceal masses using a saturated KOH solntion. Samming electron micrograplis of radnlae were made using a Field EnnissionSEAI. Line dawings of the genital anatomy were made from digital images, and measurements were taken using an ocular micrometer. Shell and radular measurements were mate as figured in Slapcinsky (2005). Whorl coment was measured from the suture of the first whorl to the body whon and fractions of a whon were determined

Figure 1. Distribution of Paryphantopsis in the Louisiade Arclipelago, Papua New Guineat $L=P$ louisiadarmm, $\mathrm{M}=P$. misimensis, $V=P$. canatinensis, $V=P \cdot$ ydensis, $o=$ other sites sumpled
with the aid of a cardloward circle divided into ten equal parts of 36°. Spire diameter was the length of a straight line passing from the apertural edge of the suture through the middle of the apex to the opposite suture. Diameter was the greatest width of the shell perpendienlar to the shell axis. Height was the greatest distance between the aperand the base of the aperture measured paraltel to the shell axis. Spire height was measured from the top of the loody whorl to the apeex of the shell. Aperture widtl was the greatest distance firm the colmmellar edge to the onter edge of the aperture. Aperture leeight was measured from the suture to the base of the agherture, paralles to the slell axis. The Following abbreviations are used in ligures of genital anatome: $\mathrm{AT}=$ atrium; $\mathrm{DI}=$ diverticulnm; $E P=$ epiphallhs; $O \mathcal{O}=$ free oviduct; $\mathrm{PE}=$ penis; $\mathrm{PC}:=$ prostate gland; $\mathrm{PP}=$ penial pilasters; $\mathrm{PR}=$ penial retractor muscle; SD $=$ sperinathecal duct; $S P=$ spermatheca; $\backslash A=$ vagina; and $\left.V^{\prime} 1\right\rangle=$
vas deferens. Temminology of regetation types follows Paijmans (1976). Specimens are deposited in the followming institutions: Bernice P. Bishop Museum, Itomohum (BPPBM): Florida Musemm of Natural History, Gainesville (UF); Natur-Mnseum Senckenberg, Frankfurt (SMF); Papua New Gnineal National Nusemm, Port Moreshy (PNGNA); Wroclaw Unisersity Museum of Natural History (MNHW); Queensland MLusemu (QNI).

SYSTEMATICS

Fannily Charopidac IIntton. 18St
Gemis Paryphantopsis Thiele, 192S
Type species: Flemmulina (Paryphantopsis) lamelliirra Thiele, 192S, loy original designation.
Paryphuntopsis lonisialarum (Möllendorlf, 1899)
(Figures 2-9, Talle 1)

Figures 2-9. Paryphantopsis louisiadarum. 2-4. Photographs of shell. UF 353425, diameter 10.6 mm . 5. Phonograph of live animal. 6-7. Camera lucida draxing of genitalia, UF 353426 , maximum widtı 11.6 mm . S-9. Scaming electron micrugraph of radula, LF 353426. field width of central and lateral teeth $61 \mu \mathrm{~m}$, inarginals $70 \mu \mathrm{~m}$.

Paryphanta louisiadarum Möllendorff, 1599: 59: Möllendorff and Kobelt. 1902-1905: 17. pl. 3. ligs 1-3.
Illonesta louisiadarım Möllendorff. 1599),-Iredale, 19.1 92-93
Paryphantopsis louisiadarum (Möllendorff, 1899).-Solem, 1955: 23: Solem. 1959: 1.56. pl. 12, figs. 10-11, pl. 13, fig. 6: Solem. 1970: 259-260.

Description: The adult shell is depressed globose and large for the genus, $9.3-11.9 \mathrm{~mm}$ (mean $=10.3$, see Table I for sample size and standard deviation) in diameter and $6.7-9.0 \mathrm{~mm}($ mean $=7.5)$ in height, with $2.7-3.6$ (mean $=2.5$) rapidly expanding whorls (Figures 2-1). The sutures are deeply impressed and the shell margin is
evenly rounded. The spire is tlat to slightly elevated $0.0-$ 0.2 mm (mean $=0.1$). The body whol descends slowly near the aperture and the shell height/diameter ratio is $0.66-0.80$ (mean $=0.73$). The shell has 1.3 evenh rounded protoconch (nuclear) whorls, sculptured with spiral rows of small pits, approximately 15 rows can be seen on the apex of adult shells. These spiral pits continue on the teleoconch (post-mulear) whorls eventually merging into incised spiral striae that weaken towards the aperture. The teleoconch whorls are also sculptured with weak growth lines that are not accentuated by periostracal extensions; these are strongest on the body whort near the aperture. The protoconch and teleoconch whorls are brown. The suture is darker brown and the body whor is usmally irregularly macmated with darker brown. The mombilicus is closed by a rellection of the peristome. The aperture is large, compressed ovate, with an aperture-width to aperture-lieight ratio of 0.91-0.95 (mean $=0.95$).

The body color is bright yellow with green-black pigment on the head and eyestalks extending in two lateral bands to the posterior of the foot (Figure 5). These bands are irregularly maculate anterionly and extend ventrally, often visible as spots on the sole of the foot. The yellow lades to creamy-white in specimens preserved in ethanol. The vas delerens remains narrow to the slightly swollen head of the epiphallus (Figure 6). The epiphallus does not bear a diverticulnom. The penis is 0.70 the length of the epiphallus and is apically robust, about 3 times the width of the epiphallns at their junction, and tapers rapidly towards its base. Penis is sculptured with four pilasters two of these are wide and two narower. Eacll pilaster is regularly plicated perpendionlar to the length of the penis (Figure 7). The penial retractor mascle originates from the diaphragm and inserts on the basal 0.30 of the epiphatlus. The spermathecal chet is robust, Barrowing gradually from the basal 0.25 to the apical 0.25 and remaining narrow until joining the ovate spermatheca The free oviduct joins the short vagina just above the spermatheca.
The central teeth of the radula (Figure δ, center row) are tricuspid, $12-13 \mu \mathrm{~m}$ wide and $15-16 \mu \mathrm{~m}$ long, ronghly the same shape as, hut smatler than, the first lateral teeth, which are $16-17 \mu \mathrm{~m}$ wide and $19-20 \mu \mathrm{~m}$ long. The mesocomes of both the centrals and first laterals are blade shaped, apically robust, witest slighty
above their mid-point, and narrowing basally, joining the rectangular hasal plates close to, but not on, their posterior edge. The mesocones of the central teeth do not project beyond the anterior edge of the basal plates, those of the lateral teeth project beyond the edge. The ectocones are trigonal and short only 0.30 of the height of the mesocones, joining the posterior edge of the basal plates. The lateral teeth are barely asymmetrical, their endocones are only slightly taller than their ectocones. The endocomes of the lateral teeth are slightly larger but otherwise of similar shape to their ectocones. The first ten teeth to the left and right of the central row are similar to the first laterals, the next form teeth on either side grade in shape and are difficult to classify as either laterals or marginals. The last five are clearly marginal teeth and are dorsocentrally compressed and tricuspid, 11-12 $\mu \mathrm{m}$ wide and 12-18 $\mu \mathrm{m}$ long (Figure 9). The endocones of the margimal teeth are 0.70 to mearly the same height as the mesocones and the ectocones vary from less than 0.50 to nearly 0.70 the height of the mesocones. The endocones and mesocones of the marginal tecth occasionally hear small notches or cusps near their apices

Lectotype: SNF 137274.

Paralectotype: SMF 165564 (1 specimen).
Remarks: Möllendorffs description of Paryphanta louisiadarmm included a single set ol measurements: major diameter 9.5 mm , minor diameter 6.5 mm , and altitude 6 mm . However, these measurements are difficult to match to either of the two now slightly broken shells of P. louisiadarm donated from his collection to NaturAhseum Senckenberg, Frankfurt, and originally cataloged together as SMF 13727. One specimen has pattemes of missing periostracum similar to the shell figured by Möllenalorff and Kobelt (1902-1905). Labeling with this shell indicates it was separated from the other specimen and marked "Lectotype" based on its similarity to the shell figured by Möllendorff: later, Solem (1970) formally published this lectotype designation. The other specimen in the lot, now the paralcetotype, was recatalogued as SMF 165564. Miollendorlf's specimens of Paryphanta lonisiadarm came from Strubell, who also

Table 1. Weasurements in mm of undamaged adult shells of four species of Parmphontopsis, $\mathrm{N}=$ sample size, $11=$ height, $\mathrm{D}=$ diameter, $S I I=$ spire height, $S I=$ spire dianeter, $A I I=$ aperture height, $A D=$ aperture width, $X I=$ number of whorls.

Species	λ		11	D	SII	SD	All	AD	IV
P lemisialarmm	50	Mean \pm SD	7.5 ± 0.7	10.3 ± 0.7	(1). 1 ± 0.1	3.6 ± 1.3	6.2 ± 0.4	6.6 ± 0.5	2.4 ± 0.1
		Range	6.7-9.0	9.3-11.9	$0,0-0.2$	$3.1)-1.0$	5.7-6.9	5.8-7.6	2.7-3.0
P. misimensis	11	Nean \pm SD	$6.0 \pm \pm 0.3$	8.0 ± 0.5	0.1 ± 0.1	2.6 ± 11.2	5.1 ± 0.3	5.3 ± 0.2	2.5 ± 0.1
		Range	5,7-6.6	7.2-8.7	$0.0-0.3$	2.3-3.1	4.7-5,5	4.5-5.5	2.3-2.7
P. conatimensis	50	$\cdots \mathrm{Can} \pm \mathrm{SD}$	5.8 ± 0.5	7.9 ± 1.7	(1) 1 ± 0.1	2.5 ± 0.3	4.9 ± 0.4	4.9 ± 0.6	2.6 ± 0.2
		Range	5.1-fi.9	7.0-9.6	0,0-0, 3	2.5-3.6	1.1-6.0	3.9-6.0)	$2.4-2.9$
P yplensis	10	\cdots Mat	2.7 ± 1.3	3.9 ± 0.3	(1). 1 ± 0.1	1.6 ± 0.2	1.9 ± 0.2	2.4 ± 0.1	2.4 ± 0.1
		Range	2. $4-3.1$	3.6-1.5	0.0-0.2	1.3-1.9	1.6-2.1	$2.3-2.6$	2.7-3.1

sent specimens to Fulton. These specimens were distril)uted to other collections that eventually fomm their way into museums, and are the sonce of UMMIZ 127616 and ANSP 10925.
Type Locality: Lonisiaden (Louisiade Ardipelago).
Other Material Examined: Papma New Guinea, Milne Bav Proxince, Lomisiade Islamds, UMMZ 127616 (l specimen): Rossel 1sland: ANSP 109257 (I specimen); UF 339009 (27 specimens), base of Tachon Gap, 569 meters altitude, $11.353^{\circ} \mathrm{S}, 154.223^{\circ} \mathrm{E}, \mathrm{J}$. Slapeinsky, 5 May 2004; UF 339012 (15 specimens) PNGNM 005-00I (5 specimens), Lipuwopu at Lipu River, 320) meters altitude, $11.346^{\circ} \mathrm{S}, 154.221^{\circ} \mathrm{E}$. . . Slapeinsly, 12 May 2004: BPBM 265733 (5 specimens), MNHW MN 998 (5 specimens), UF 339011 (16 specimens), UF 353425 (1 specimen), LTF $353+26$ (1 specimen), Lubwe Creek at base of Tachu Gap, 635 meters altitude, $11.354^{\circ} \mathrm{S}$, 154.223° E, J. Slapecinsky, 6 May 2004; UF 339015 (29 specimens), Tachur Gap below summit of Moment Rossel, 6.9 meters altitude, $11.356^{\circ} \mathrm{S}, 154.243^{\circ} \mathrm{E}, \mathrm{J}$. Slapeinsky, 4 \at 2004 ; UF 339010 (4 specimens), Wy of former site of Cobubop Village, 255 meters altitude, $11.336^{\circ} \mathrm{S}$, 154.221° E, J. Slapeinsky, 16 May 2004; UF 339013 (S specimens), Wopu River upstream of trail crossing near abandoned Yela Village, 250 meters altitude, $11.338^{\circ} \mathrm{S}$, $154.224^{\circ} \mathrm{E}, \mathrm{J}$. Slapcinsky, 14 Nay 2004 ; SFM (5 specimens), QN1 MO76144 (5 specimens), UF 3390 It (12 specimens), lelebop Mountain S ol Mount Rossel, 777 meters altitude, $1\left[.357^{\circ} \mathrm{S}, 154.222^{\circ} \mathrm{E}\right.$, J. Slapeinsky, 8 May 2004.
Habitat: Observed above 280 meters altitude in mixed hill forest and mixed lower montane forest, active during the day crawling on trees and shrubs from near ground level to 2 m height.
Remarks: Within Paryphantopsis, P. louisiadarmm is similar only to P. globosa, P. misimensis, P. ubuamensis, and P. canatinensis in lacking all traces of periostracal extensions on the growth lines. Paryphantopsis Lousiadarm differs from P. globosa in being smaller, having a closed umbilicus and fewer whorls and differs liom P. misimensis and P. vanatinensis in laving a penis that is robust apically and narrow basally. It further differs in body color pattern with two broad lateral bands not present in P. misimensis that extend to the sole of the foot unlike those of P. vanatinensis. The shell of P. louisiadarum is usually irregularly maculated with darker pigment unlike the more uniformly colored P. misimensis and P. canatinensis. Paryphantopsis ubuamensis differs from P. Ionisiadarm in laving a more tightly coiled shell with a higher spire and an apical diverticulnm on the epiphallus.
Paryphantopsis misimensis new species
(Figures 10-17, Table])
Description: The adult shell is globose, large for the genus, $7.2-5.7 \mathrm{~mm}$ (mean $=5.0$, see Table 1 for sample size and standard deviation) in diameter and $5.7-6.6 \mathrm{~mm}$ $($ mean $=6.0)$ in heiglat, with 2.3-2.7 $($ mean $=2.5)$ rapidly
expanding whorls (Figures 10-12). The suture is deeply impressed and the shell margin is evenly romeded. The spire is flat to slightly elevated, $0.0-0.3 \mathrm{~mm}$ (mean $=0.1$), the body whorl descends slowly and regularly. Shell heightdiameter ratio is ($0.65-0.8 \mathrm{j}$ (mean $=0.75$). There are 1.3 evenly rounded protoconch whorls, sculptured with spiral rows of small pits; approximately 13 rotss can be seen on the apex of arhilt shells. Rows of spiral pits are continued on the teleoconch, becoming weaker and eventnally merging to become incised spiral striae. Spiral striae weaken becoming nearly obsolete on the final 0.25 of the body whon where shell scmpture becomes predominated by weak and somewhat rounded growth lines that do not bear periostracal extensions. The protoconch and telexonch whorls are uiformly bown, except for some darker pigmentation in the suture. The umbilicus is closed by a rellection of the peristome. The aperture is large, ovate, with an aperture-width to aperture-height ratio of 0.57-1.02 (mean $=0.97$).

The body color is miform yellow that fades to cream in specimens presersed in ethanol; there are no lateral bauds on the foot or pigment on the eyestalks (Figure I3). The vas deferens narrows rapidly after the prostate gland and remains narow matil entering the slightly swollen head of the epiphallus (Figure 14). The epiphallus is robust, especially hasally where it is twice the diameter of its mid-point, it does not bear a diverticulum, and is 1.25 times penis length. The penial retractor muscle originates on the diaphragm and is inserted near the mid-point of the epiphallos. The penis is robust thronghout its length, approximately $0.25-0.30$ larger than the base of the epiphallus. Penis is sculptured with two massive smooth pilasters (Figure 15). The spermatheca is ovate, its duct is narrow throughout its length expanding only slightly at the junction with the free oridhct at the short vagina only slightly above the atrium.

The central teeth of the radula (center row) are tricuspid, 9-10 $\mu \mathrm{m}$ wide and $16-17 \mu \mathrm{~m}$ long, smaller than the first lateral teeth, which are $13-14 \mu \mathrm{~m}$ wide, $21-2.2$ $\mu \mathrm{m} \operatorname{long}$ (Figure 16). The mesocones of the central teeth do not project beyond the basal plate while those of the lateral teetla do. The ectocones of the central and lateral teeth are about 0.30 the height of the mesocones. The laterals are tricuspid and slightly asymmetric with the endocone of each lateral tooth slightly taller than the ectocone. The endocones of the lateral teeth are slightly larger but othemise of similar shape to their ectocones and both point towatrds their mesocones. The first seven tecth to the loft and right of the central row are similar to the first lateral teeth, the next five teeth on either side grade in slape and are difficult to classily as either lateral or marginal teeth. The last six are clearly marginal teetls and are dorsosentrally compressed and tricuspid, withont accessory cusps, J J - $12 \mu \mathrm{~m}$ wivle and 15-18 $\mu \mathrm{m}$ long (Figure 17). The endocones of the marginals are 0.70 the height of the mesocones while the ectocones are shonter, only 0.50 the height.

Figures 10-17. Parph hantopsis misimensis. 10-12. Photographis of shell, Ifolodype UF 308234, diameter S.t mm. 13. Photograph of live mimal. 14-15. camera lucida drawing of genitatia, UF 353 t23, maximum widtl 9.3 mm . 16-17. Scaming electron micrograph of radula, UF 353422, fold width of central and lateral theth $73 \mu \mathrm{~m}$, marginad teeth $\mathrm{ht} \mu \mathrm{m}$.

Holotype: UF $308234, F$ Krans, 17 Jamary 2003.
Pamapes: BPBM 26583t (2 specimens), PNGNM $005-002$ (5 specimens), UF 303579 (19 speeimens), UF 303550 (7 specimens), UF $353+24$ (1 speeimen), UF $353+22$ (2 specimens), type locality, F. Krams, 17 Jamary 2003
Type Locality: Papua New Gumea, Mihe Bay Province, Louisiade Archipelago. Misima island, Oya Tan, 1014 meters altitude, $10.660^{\circ} \mathrm{S}, 152.629^{\circ} \mathrm{E}$.

Habitat: Active duming the dar on trees and shrmbs within 2 meters of the ground in mixed lower montane forest near the summit of Oya Tan.
Etymology: Named for Misima lslant where this species is presumed to be endemic.
Remarks: Paryphantopsis misimensis is similar only to P. globosa, P. louisiadarmm, P. uluramensis, and P. canatinensis in lacking all traces of periostracal extensions on the growth lines. Paryphantopsis misimensis dilfers from P. gloloosa in being smaller, having a closed umbilieus and fewer whorls and dillers from P. lonisiadarum and P. camatimensis in having a penis that is robust throughout its length, not having dark lateral bands on the foot, and having narrower radular teeth with endoeones and ectocones that point towards the mesocones. Paryphontopsis ubuamensis differs from l? misimensis in hating a more tightly coiled shell with a higher spire and an apical diverticalim on the epiphallus.

Paryphantopsis canatinensis new speeies

(Figures 1S-25. Table 1)
Description: The adult shell is globose, larger than arerage for the genus, $7.0-9.6 \mathrm{~mm}$ (mean $=7.9$, see Table 1 for sample size and standard (leviation) in diameter and $5.1-6.9 \mathrm{~mm}$ (mean $=5.5$) in height, with $2.4-2.9$ (mean $=2.6$) rapidly expanding whorls (Figures 18-20). The suture is deeply impressed and the shell margin is evenly rounded. The spire is flat to slightly elevated, $0.0-0.3 \mathrm{~mm}$ (mean $=0.1$). Teleoconch whorls descend slowly and regularly montil the final 0.70 of the body whom where it descends more rapidly: Shell height/diameter ratio is $0.75-0.91$ (mean $=0.55)$. There are 1.3 evenly rounded protoconch whorls seulptured with spiral row's of small pits: approximately 13 rows can be seen on the apex of adult shells. These pits become larger and less regular on the teleoconch whorls eventially fusing to form ineised spiral striae. Spiral striae weaken slightly on the final 0.25 of the body whorl where shell sculpture becomes predominated by weak and somewhat rounded gronth lines that do not bear periostracal extensions. Protoconch and teleoconch whorls are uniformly brown except for some darker pigmentation near the aperture. The umbilieus is closed by a rellection of the peristome. The aperture is large, ovate, witl an aperture-vidth to aperture-height ratio of 0.92-1.12 (mean $=1.01$).

The body color is bright vellow with green-black pigment on the evestalks and in two weak mid-lateral bands on the anterior of the foot and two stronger mid-lateral
bands on the posterior half of the font (Figure 21). These bands are solid, not maculate, do not extend to the ventral edge of the foot, and can not be seen on the sole ol the foot. In some individuals the anterior bands are lacking. The yellow lades to creany-white in specimens presemed in ethanol. The vas deferens narrows slightly to the junction with slightly inllated eylindrical head of the epiphallus (Figure 22). The epiphallus is approsimately 0.50 the diameter of the penis, narrows only slightly basally and does not bear a diverticulum. The penial retractor muscle is short, originating from the eliaphragm, and inserted at the basal 0.30 of the epiphatlus. The penis is about the same lengtla as the epiphatlus, and sculptured with several rows of regularly plicate pilasters (Figure 23). The atrium is moderate in size and of consistent width. The spermathecal duct is robust remaining wide for basal 0.50 then tapering gradually to the junc tion witl the ovate spematheca. The free oniduct is about 0.50 the diameter of the spermathecal duct where they join. The vagina is of moderate length about the same length as the atrium.

The central teeth of the radula (middle row) are stm metrically tricuspid, 13-14 $\mu \mathrm{m}$ wide and $17-15 \mu \mathrm{~m}$ long. The slightly asymmetrical lateral teeth are otherwise similar in shape to the central teeth but are slightly wider, 15-16 $\mu \mathrm{m}$ wide, and nearly identical in length. 17-18 $\mu \mathrm{m}$ long (Figure 24). The blemtly conical and erect mesocones of the central and lateral rows join their basal plates near the posterior edge and project to or slightly beyond the anterior of their basal plates. The ectoeones of both the central and lateral rows are trigonal aud short, about 0.50 of the height of the mesocones, and join the posterior edge of their basal plates. The endocones of the lateral teetlo are slightly larger but otherwise of similar shape to their ectocones. The first ten teeth to the left and right ol the central row are clearly lateral teeth; the next five on either side grade in shape and are difficult to classify as either laterals or marginal teeth. The last five are clearly marginal teeth and are dorsoventrally eompressed, tricuspid, abont $11-1+\mu \mathrm{m}$ wide and 13-19 $\mu \mathrm{m}$ long (Figure 25). The endocones are a bit more than 0.70 the heights of the mesocones while the ectocones are slightly shorter, about 0.70 the height of the mesocones.

Holotype: UF 353421, J. Slapeinsky, 19 April 2004.
Paratypes: Papua New Guinea, Nilne Bay Provinee, Louisiade Archipelago, Sudest lsland (Vamatinai, Tagula): BPBMI 265735 (10 specimens), NNIIW MP 989 (5 specimens), PNGNM 005-003 (10 specimens), SFM (10 specimens), QM MO76145 (5 specimens), UF 339019 (65 specimens), UF 347229 (3 specimens), UF 353420 (1 specimen), UF 353423 (1 specimen), type locality, I. Slapcinshy, 19 April 2004: UF 3390 IS (41 specimens), base of Noment Rinu (Moment Rio) on the Esiraba Riser, 120 meters altitucke, 11.492° S, 1533.413° E, J. Slapeinsky, 15 April 2004; UF 339015 (37 specimens), near Avammolo Rock Shetter, 150 meters altitude $11.490^{\circ} \mathrm{S}, 153.420^{\circ} \mathrm{E}, \mathrm{J}$. Slapcinsly, 23 April 2004.

Figures 18-25. Paryphutopsis tanatinensis. 18-20. Photograplis of shell. Holotype UF 353421, diameter 7.6 mm . 21. Photograph of live aminal. 22-23. Camera lucida draving of genitalia, UF $353+23$, maximum width 5.9 mm 24-25. Scanning electron inicrograph of radula, LF 3.53423 , field width of central and lateral teeth $57 \mu \mathrm{~m}$. marginals $52 \mu \mathrm{~m}$.

Type Iacality: Papua New Guinea, Milne Bay Prosince. Lonistade Archipelago, Sudest Island (Vanatinai, Tagula). Emua Peak, just W of the summit of Mount Rin Nount Rio), 725 moters altitude $11.507^{\circ} \mathrm{S}, 153.431^{\circ} \mathrm{E}$.

Habitat: Found active during the day on trees and shrulss from near ground level to 2 meters in mixed hill forest and mixed lover montane [orest from 120 meters to 72.5 meters altitude

Etymology: Named for Vamatinai 1skand where this species is presumed to be endemic.

Remarks: Paryphantopsis vanatincnsis is similar only to P. globosa, P. lonisiadarum, P. misimensis, and P. ub; wamensis in lacking all traces of periostracal extensions on the growth lines. Paryphantopsis canatinensis differs from P. globosa in being smaller, having a closed mbilicus and fewer whorls and differs from P. louisiadarmm and P. misimensis in haning a penis that is relatively narrow throughout its length and having dark lateral bands that are not maculate and do not exteud to the sole of the foot. Paryphantopsis nbwamensis differs from P. vanatinensis in having a more tightly coiled shell with a higher spire and an apical diverticulum on the epiphallus.

Paryphantopsis yelonsis new species

(Figures 26-32, Table I)
Description: The adult shell is globose to depressed globose, small for the genus, $3.6-4.5 \mathrm{~mm}$ (mean $=3.9$, see Table 1 for sample size and standard deviation) in diameter and 2.4-3. $1 \mathrm{~mm}($ mean $=2.7)$ in height, with …-3.0 (mean $=2.7$) rapidly expanding whorls'(Figures 26-28). The shell is wider and slightly angular below the mid-point and its suture is deep, sometimes appearing nearly aduate. The spire is lat to elevated, $0.0-0.2 \mathrm{~mm}$ (mean $=0.1$). Teleoconch whorls descend regularly and shell height/diameter ratio is $0.62-0.73$ (mean $=0.68$). There are 1.2 rounded protoconch whorls; approximately 13 rows of spiral lirae can be seen on the aper of adnit shells. These lirae are crossed by stronger sharp axial lines forming a lattice pattern. The teleoconch is sculptured with spiral rows of pits that become less regular malleations on the fimal third of the body whorl. This shell sculpture is somewhat obscured by periostracal extensions approximately every $6-\overline{6}$ growth lines that are accentuated with processes at the angled shell margin. These processes are often worn and can be missing from some adult shells. The protoconch and teleoconch whorls are uniformly hromm. A reflection of the peristome closes or nearly closes the umbilicus. The aperture is large, nearly circular except at the angled periphery and has an aperture-width to aperture-height ratio of $0.69-0.93$ $($ mean $=0.50)$.

In life the body color is bright yellow, there are no lateral patches on the foot, the eyestalks are dark blackbrown, the vellow fades to cream in specimens preserved in ethanol. The vas deferens narrows toward the junction with the inflated spherical head of the epiphallus. Immediately below the head of the epiphallus there is a finger shaped apical divertionlum that is ronghly $1 / 2$ the length of and nearly the same diameter as the epiphallus (Figure 29). The epiphallus is approximately the same length as the penis. The penial retractor muscle is long, originating from the diaphragm, and inserted just below the mid point of the epiphallus. The epiphallus is ronghly half the diameter of the penis. The penis is widest 0.30 of the way down from the apex and narrows slightly towards
the aper and towards the base where it is 0.70 the diameter of the atrium at their junction. Penis sculptured with a narmow pilaster that widens basally (Figure 30). The atrinm is average to short, about 0.50 the length of the relatively long vagina. The spermathecal duct, free oviduct, and vagina are all of similar diameter at their junction. The spermathecal duct is relatively narrow basally and tapers slowly and evenly until joining the spherical spermatheca.

The central teeth of the radula (center row) are tricuspid, $7-8 \mu \mathrm{~m}$ wide and $12-13 \mu \mathrm{~m}$ long, of similar shape and length but slightly narrower than the first lateral teeth, $8-9 \mu \mathrm{~m}$ wide and 12-13 $\mu \mathrm{m}$ long (Figure 31). The mesocones of both the central and first lateral teeth are relatively short and bhint, not tapering until the rounded tip of the cusp and not extending beyond their basal plates. They appear particularly short because they project nearly perpendicularly from their basal plates and not as much anteriorly: Mesocones of the central and lateral teeth are attached toward the middte of their basal plates. The ectocones of the central teeth and the nearly symmetric ectocones and eudocones of the laterals are trigonal and about 0.50 the height of the mesocones. The endocones of the lateral teeth are slightly larger but othenvise of similar shape to their ectocomes. The first five teeth to the lelt and right of the central row are similar to the first lateral teeth, the next three on either side grade in shape and are difficult to classify as either laterals or marginal teeth. The last five are clearly marginal teeth and are dorsonentrally compressed and tricuspid, $7-9 \mu \mathrm{~m}$ wide and $7-8 \mu \mathrm{~m}$ long (Fignre 32). The ectocones of the marginal teeth are only slightly shorter than their endocomes, which are only slightly shorter than their mesocones.
Holotype: UF 353427, J. Slapeinsky, 12 May 2004.
Paratypes: Papua New Guinea, Mihne Bay Province, Louisiade Archipelago, Yela lsland (Rossel Istand): UF 339016 (I5 specimens), UF 35342 (1 specimen), type locality, J. Slapcinsky, 12 May 2004 ; UF 339120 (1 specimen). Wopu River upstream of trail crossing near abandoned Yela Village, 280 meters altitude, $11.335^{\circ} \mathrm{S}$, 154.224° E. J. Slapcinsky, 14 May 2004; UF 339119 (1 specimen), former site of Gopuhop Village, 275 meters altitude, $11.335^{\circ} \mathrm{S}, 154.222^{\circ} \mathrm{E}$, I. Slapcinsky, 13 May 2004: UF 342911 (2 specimens), W of fomer site of Gopubop Village, 285 meters altitude, $11.336^{\circ} \mathrm{S}$, $154.221^{\circ} \mathrm{E}, \mathrm{J}$. Slapcinsky, 16 May 2004.
Type Locality: Papua New Guinea, Nime Bay Prorince, Louisiade Archipelago, Yela 1sland (Rossel İslamd), Lipuwopu at Lipu River, 320 meters altitude. $11.346^{\circ} \mathrm{S}$, $154.221^{\circ} \mathrm{E}$.

Habitat: All specimens were collected in mixed hill forest from 275 to 255 m altitude. Individnals were olsenved active during the day on boulders that were densely encrusted with algae, mosses and lichens, and, less commonly, on dead logs and twigs near the ground.

 lucida drawing of genitaliat, UF 353t2S, maximum width 4.7 mm . $31-32$. Scaming electron micrograph of radula, UF 35342 s , field width of central and lateral teethi $17 \mu \mathrm{~m}$, marginal teetlo $27 \mu \mathrm{~m}$.

Remarks: Paryphantopsis ydensis differs from all other Paryphentopsis from the Losisiades. P. Iomisiadurum, P' misimensis, and P? canulinensis, and from the lowand species from the mainland. P. Momsia and P yencii, in traving an apical diverticulam on floe eppiphallus.

Paryphantopsis yolensis differs from all other species of Paryphammosis sther tham P. globosa and P ? striata in having protuconch scolpture of axial and spiral lirae rather tham spiral pits. However, P. ghobosa and P. striata hatse roughly equal axial and spiral lime while P. yelensis
has stronger avial sculpture. Of the species for which the radular momhology is known. the origin of the mestocones from the center of the basal plate in the central and lateral teeth of P. yelensis is similar only to P. Ichasio and P. yauzi.

Etemology: Named for Mela sland where this species is presumed to be endemic.

DISCUSSION AND CONCLUSIONS

New Guinea lies at the leading edge of the Anstralian plate and is geologically complex, with much of the easterm and morthern edge of the island and nearby satellite islands being composed of accreted terranes (Pigram and Danies. 1957). This complex seology has promoted the development of a mique and diverse biota that is still being discovered. Terrestrial invertebrates including snails are especially peorly known, being both inadequately sampled and diverse as evidenced by recent collecting in eastem Papua New Guinea. Recent collecting has meovered higgh diversity and endemism in the genus Paryphentopsis, with all isolated momatains sampled having mique suites of endemic and previonsly undescribed species (Slapcinsky, 2005).

The islands off New Cuinea including the Lomisiades are also rich in endemic Paryphantopsis species, although onls one of these, P. Ionisiadarm, was previoush described (Möllendorff. 1599) and later localized to Rossel Island (Solem, 195S) where it appears to be endemic. The Louisiades are also very poorly sampled with ouly approximately 30 species of terrestrial snails previously known from the archipelage (Iredade, 19+I). The ongeing brief survers of a small portion of the three largest islands in the Louisiade Archipelago lave increased the known diversity of Paryphantopsis in the Lomisiades by 300%. In addition to Paryphantopsis, species from several other charopid genera and other families were als, collected; these will be treated in later puldications. The family Charopidae, previonsly considered to be a miner component of the terrestrial mollusk fanna of New Guinea, with relatively few species and genera (Solem, 195.3), may be among the most diversc lamilies on New Guinea and its satellite islands, rivaling the spectacular radiations exhibited by this family in the oceanic Pacific (Solem, 1953).

Two groups of Poryphontonsis appear to have colonized the Louisiade Arclipelago. One gromp. P. lomisindarmm. P. misimensis, and P. canatinensis share similar large globose shells that have nearly Hat spires and large apertures, are sculptured with spiral rows of pits that finse to form ineised spiral striae, and do not lear periostracal extensions or processes on the groyth lines. A second group includes only P. yelensis a small species with strong axial sculpture on the protoconch and periostracal extensions with marginal processes on the growth lines of the teleoconch and with an apical diverticulum on the epiphallus. The relationship of both Louisiade clades
with species from mainland Papua New Guinea is mot dear. The three large suecies from the Lonisiades. P. Ionisiadarmm. P^{\prime}. misimensis, and P. canatinensis lack periostracal extensions on the growth lines similar only to P. stolosa and P. Ilmamensis from mainland Papua New Guinca; however, they also lack an apical divertionlum similar ondy to P^{\prime}. MNasiii and P. yausii from the adjacent Papuan Peminsula. The relationship of P. yelensis to mainland species of Parphhantopsis is equally creptic. The radnla in this species has central and lateral tee th with mesocones that originate from near the center of the basal plates, a trait that is thens far known only from P. Lehasii and P. ymeit. however unlike those species, P. yelensis prossesses an apical diverticulum. Althongh amatomic evidence suggests two origins for Paryphantopsis in the Lomisiade Archipelago, additional anatomic and/or genetic characters would be necessary to determine the relationships of these species to those from mainland New Cuineal

ACKNOWLEDGMENTS

I thank the landoneners of Araetha, Theme, Damemn, and Liak for permission to work on their land and for lield assistance; F. Kians, F. Nalesa, D. Nitchell, and C. Shea for additional field assistance; G. Kula and D. Nitchell of Conservation International for proniding logistical support and adrice: Papua New Guinea National Nusemm and At Gallery for providing in-comntry collaborative assistance; Papua New Guinea Department of Enviromment and Conservation, Papua New Guinea National Researd Institute, and Nihne Bay Provincial Gonermment for permission to work in Ailne Bay Prosince: K. Kelley, Electron Microscopy Core Laboratory, University of Florida for imaging radulae; E. Neubert for photograpling labels and tipe material of P'aryphantopsis houisiadamm; 1. Appleton, P. Callomon, R. Jenssen, D. Potter, and M. Shea for facilitating mes study of specimens in their care; and J. Worsfold for shaming libliographic information. Fieldwork for this research was supported by National Science Foundation grant DEB $010379+$ and the University of Florida Foundation, MeGinty Endowment. F. Kraus, T. Pearce. F. G. Thompsion, and an anonymous reviewer suggested inprovements to earlier dralts of this mannscript.

LITERATURE CITED

Iredale, T. $19+1$ I Dasic list of the land Mollusca of Papua. The Australian Zoologist 10: 51-94.
Döllendorff. O 1899. Neme arten ans der Stmbellschem sammheng. Nachimeltsblatt der Dentschen Malaknzoologischem Gesellschaft 31(5): 89-92.
Völlendorff, (0, and IV. Kobelt. 1902-1905. Die ranbhngenschneckon (Agnatha). Erste abtheilong: Rhytiduae et Enneidae. Systematisches Conchlien-Cabinet von Matimi and Chemont» 1, 12, B: 1-362; plts 1-41.

Pajmans, K. 1976. Vegetation. In: Paijmans, K. (ed.) New Guinea Vegetation, Australia National University Press, Canberra, 212 pp .
Pigram, C. J. and Davies, H. L. 1957. Terranes and the accretion history of the New Gumea orogen. BMR Journal of Australian Ceology and Geophysics 10: 193-211.
Slapcinsky, J. 2005. Six new species of Paryphantopsis (Gastropoda: Pulmonata: Charopidae) from the Papuan Peninsula of New Guinea. The Nautilus 119: 27-42.
Solem, A. G. 1955. Endodontide landschmecken von Indonesien und Neu Guinea. Archiv für Molluskenkunde 87: 1926.

Solem, A. C. 1959. On the family position of some Palau, New

Guinea, and Queensland land snails. Archiv für Molluskenkunde 85: 151-15S; pls. 12, 13, 2 figs.
Solem, A. G. 1970. The Endodontid land snail genera Pilshrycharopa and Paryphantopsis (Mollusca: Pulmonata). The Veliger 12: 239-264.
Solem, A. G. 1983. Endodontoid land snails from Pacific Islands (Mollusca: Pulmonata: Sigmurethra) Part 11, Families Punctidae and Charopidae, Zoogeography. Field Museum of Natural History, Chicago, ix +336 p .
Thiele, J. 192s. Mollusken vom Bismark-Archipel, von NeuGninea und Nachbar-Insehn. Zoologische Jahrbücher 55: 119-146.

